Over the past half-million years, the equatorial Pacific Ocean has seen five spikes in the amount of iron-laden dust blown in from the continents. In theory, those bursts should have turbo-charged the growth of the ocean's carbon-capturing algae -- algae need iron to grow -- but a new study shows that the excess iron had little to no effect.
The results are important today, because as groups search for ways to combat climate change, some are exploring fertilizing the oceans with iron as a solution.
Algae absorb carbon dioxide (CO2), a greenhouse gas that contributes to global warming. Proponents of iron fertilization argue that adding iron to the oceans would fuel the growth of algae, which would absorb more CO2
The new study, published this week in the
Essentially, earth has already run its own large-scale iron fertilization experiments. During the ice ages, nearly three times more airborne iron blew into the equatorial Pacific than during non-glacial periods, but the new study shows that that increase didn't affect biological productivity. At some points, as levels of iron-bearing dust increased, productivity actually decreased.
What matters instead in the equatorial Pacific is how iron and other nutrients are stirred up from below by upwelling fueled by ocean circulation, said lead author Gisela Winckler, a geochemist at Columbia University's Lamont-Doherty Earth Observatory. The study found seven to 100 times more iron was supplied from the equatorial undercurrent than from airborne dust at sites spread across the equatorial Pacific. The authors write that although all of the nutrients might not be used immediately, they are used up over time, so the biological pump is already operating at full efficiency.
"Capturing carbon dioxide is what it's all about: does iron raining in with airborne dust drive the capture of atmospheric CO2? We found that it doesn't, at least not in the equatorial Pacific," Winckler said.
The new findings don't rule out iron fertilization elsewhere. Winckler and coauthor Robert Anderson of Lamont-Doherty Earth Observatory are involved in ongoing research that is exploring the effects of iron from dust on the Southern Ocean, where airborne dust supplies a larger share of the iron reaching the surface.
The
To gauge how productive the algae were, the scientists in the
"Neither natural variability of iron sources in the past nor purposeful addition of iron to equatorial Pacific surface water today, proposed as a mechanism for mitigating the anthropogenic increase in atmospheric CO2
Past experiments with iron fertilization have had mixed results. The European Iron Fertilization Experiment (EIFEX) in 2004, for example, added iron in the Southern Ocean and was able to produce a burst of diatoms, which captured CO2
The Intergovernmental Panel on Climate Change (IPCC) cautiously discusses iron fertilization in its latest report on climate change mitigation. It warns of potential risks, including the impact that higher productivity in one area may have on nutrients needed by marine life downstream, and the potential for expanding low-oxygen zones, increasing acidification of the deep ocean, and increasing nitrous oxide, a greenhouse gas more potent than CO2.
"While it is well recognized that atmospheric dust plays a significant role in the climate system by changing planetary albedo, the study by Winckler et al. convincingly shows that dust and its associated iron content is not a key player in regulating the oceanic sequestration of CO2
Story Source:
The above post is reprinted from