Tropical cyclones (TCs) induce heavy precipitation and flooding in addition to damages associated with high winds and storm surges1. Precipitation associated with TCs accounts for ~6–9% of total precipitation over the Tropics on average, but can account for as much as 50% of total precipitation over large portions of ocean basins2. The cumulative rainfall and potential damages associated with a TC depend in large part on the rainfall rate, rainfall area coverage and translation speed of the storm. Past studies have investigated potential changes in the frequency and rainfall intensity of TCs under a warmer climate. These studies project a decrease in the total number of TCs but an increase in the occurrence frequency of stronger TCs3, 4, 5, 6. One of these studies also projects an ~20% increase in TC precipitation within 100 km of the storm centre by the late 21st century6. Few studies have examined possible changes in TC rainfall area. TC rainfall area is closely related to the TC wind field, with heavy precipitation generally confined within the outermost closed isobar7, 8. TC rainfall area is therefore a gross measure of TC size, particularly with respect to the outer radius8. Note that this definition of TC size can differ from definitions based on the TC wind field, such as the radius of maximum wind or gale force wind. Rainfall area or size can be influenced by a number of factors, such as environmental humidity, low-level vorticity, vertical wind shear, TC latitude and TC intensity9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. It varies greatly from one TC to another. Theoretical studies and idealized radiative convective equilibrium simulations have suggested that TC potential intensity (PI) divided by the Coriolis parameter may be a good measure of TC size14, 15, 16, 17; however, the extent to which this scaling is realized in the real world remains uncertain18, 19. Key questions remain regarding the mechanisms that control TC size and its changes in a warming climate.
Using currently available satellite measurements and global atmospheric model simulations, we examine the sea surface temperature (SST) dependence of rainfall area and rainfall rate in TCs. We find that TC rainfall area is controlled primarily by the relative magnitude of SST in the TC local environment with respect to the tropical mean SST (that is, the relative SST), while TC rainfall rate increases with absolute SST. TC rainfall area is therefore not likely to change markedly in a warmer climate provided that SST changes are relatively uniform throughout the tropics. Increases in TC rainfall are then mostly attributable to increases in TC rainfall rate. The strong dependence of TC rainfall area on relative SST is consistent with previous numerical simulations that suggested a tight relationship between TC size and mid-tropospheric relative humidity (RH) in the TC environment. In the tropics, relative SST strongly regulates the spatial distribution of mid-tropospheric humidity. TCs tend to expand as they move into regions where the mid-tropospheric humidity is high, which closely correspond to regions of high relative SST. Although the impact of relative SST can be partly understood using the PI framework, our analyses of global atmospheric model simulations suggest that relative SST is a better predictor of TC rainfall area than PI.
|
Address: 7 Nanhai Road, Qingdao, Shandong 266071, China
Tel: 86-532-82898902 Fax: 86-532-82898612 E-mail: iocas@qdio.ac.cn